热门资讯> 正文
2025-08-27 13:58
(来源:华经产业研究院)
机器学习行业产业链主要可以分为三个层次:基础层、技术层和应用层。基础层是机器学习行业的“地基”,主要包括硬件设施和软件平台。技术层是机器学习行业的“工具箱”,主要包括各种核心算法和关键技术。应用层是机器学习行业的“延伸”,主要包括各种智能产品和解决方案。
AI芯片类型丰富多样,涵盖CPU、GPU、ASIC、FPGA等。它们通过独特架构与技术,为机器学习供应强大计算力,能高效处理海量数据与复杂运算。数据显示,2024年中国AI芯片市场规模飙升至1412亿元。这一迅猛增长态势,为机器学习行业发展注入强劲动力,不仅大幅提升运算效率、缩短模型训练周期,还推动机器学习应用场景拓展,加速其在各行业落地,助力产业迈向新高度。
本文节选自华经产业研究院发布的《2025年中国机器学习行业现状及发展趋势分析,跨领域融合与创新应用的不断涌现「图」》,如需获取全文内容,可进入华经情报网搜索查看。
当下,数字化转型需求如潮水般激增,促使各行业积极拥抱新技术。在此背景下,机器学习技术展现出强大的渗透力,从金融领域的智能风控,到医疗行业的精准诊断,再到制造业的智能生产优化,均有广泛应用。2022年,我国机器学习行业市场规模顺势增长至237亿元,凸显出其强劲的发展势头。
机器学习正逐渐渗透到各个行业领域,与不同领域的专业知识相结合,催生出许多创新应用。例如,在医疗健康领域,机器学习可以用于疾病预测、药物研发等方面;在金融领域,机器学习可以用于风险评估、欺诈检测等方面。未来,随着技术的不断进步和应用场景的不断拓展,机器学习将在更多领域发挥重要作用,并推动这些领域的创新发展。
华经产业研究院研究团队使用桌面研究与定量调查、定性分析相结合的方式,全面客观的剖析机器学习行业发展的总体市场容量、产业链、经营特性、盈利能力和商业模式等。科学使用SCP模型、SWOT、PEST、回归分析、SPACE矩阵等研究模型与方法综合分析机器学习行业市场环境、产业政策、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等相关因素。根据机器学习行业的发展轨迹及实践经验,精心研究编制《2025-2031年中国机器学习行业发展监测及投资战略咨询报告》,为企业、科研、投资机构等单位投资决策、战略规划、产业研究提供重要参考。
报告目录
第一章 机器学习相关介绍
1.1 人工智能相关概念
1.1.1 人工智能的定义
1.1.2 人工智能产业链
1.1.3 人工智能基本要素
1.2 机器学习的概念
1.2.1 机器学习的定义
1.2.2 机器学习开发平台
1.2.3 机器学习的原理
1.2.4 机器学习应用范围
1.3 机器学习的分类
1.3.1 按学习模式不同分类
1.3.2 按算法网络深度分类
第二章 2020-2024年人工智能行业发展综合分析
2.1 全球人工智能行业发展综述
2.1.1 人工智能发展历程
2.1.2 人工智能支持政策
2.1.3 人工智能市场规模
2.1.4 人工智能区域分布
2.1.5 人工智能市场结构
2.1.6 人工智能专利数量
2.1.7 人工智能融资规模
2.1.8 人工智能应用状况
2.2 中国人工智能市场运行状况
2.2.1 人工智能发展历程
2.2.2 人工智能产业政策
2.2.3 人工智能市场规模
2.2.4 人工智能软件规模
2.2.5 人工智能企业数量
2.2.6 人工智能发展现状
2.2.7 人工智能从业人员
2.2.8 人工智能融资规模
2.3 人工智能基础层
2.3.1 基础层产业链价值
2.3.2 基础层发展历程
2.3.3 基础层市场规模
2.3.4 基础层发展现状
2.3.5 基础层融资规模
2.3.6 基础层发展问题
2.3.7 基础层发展趋势
2.4 人工智能技术层
2.4.1 技术层发展现状
2.4.2 人工智能技术全景
2.4.3 人工智能技术水平
2.4.4 人工智能技术分布
2.4.5 人工智能技术成熟度
2.4.6 人工智能热点技术
2.4.7 人工智能专利数量
2.4.8 自然语音处理技术
2.4.9 生物特征识别技术
2.4.10 知识图谱技术
2.4.11 计算机视觉技术
2.4.12 语音语义技术
2.4.13 人工智能技术平台
2.4.14 技术层发展问题
2.4.15 技术层发展趋势
2.5 人工智能应用层
2.5.1 应用层发展现状
2.5.2 各应用层成熟度
2.5.3 应用层市场结构
2.5.4 应用层发展问题
2.5.5 应用层发展趋势
2.5.6 人工智能医疗领域应用
2.5.7 人工智能金融领域应用
2.5.8 人工智能智慧城市应用
2.5.9 人工智能教育领域应用
2.5.10 人工智能制造业应用
2.6 部分城市人工智能产业发展状况
2.6.1 上海市
2.6.2 北京市
2.6.3 深圳市
2.6.4 杭州市
2.7 中国人工智能行业发展趋势分析
第三章 2020-2024年机器学习行业发展综合分析
3.1 全球机器学习行业发展综述
3.1.1 机器学习市场规模分析
3.1.2 机器学习行业发展动力
3.1.3 机器学习市场竞争格局
3.1.4 机器学习发展面临挑战
3.1.5 机器学习企业竞争优势
3.1.6 机器学习市场前景预测
3.2 中国机器行业发展现状分析
3.2.1 机器学习行业发展历程
3.2.2 机器学习行业政策回顾
3.2.3 机器学习市场规模分析
3.2.4 机器学习市场区域分布
3.2.5 机器学习市场竞争格局
3.2.6 机器学习平台市场份额
3.2.7 机器学习行业制约因素
3.3 中国机器学习行业技术发展状况
3.3.1 机器学习技术发展路线
3.3.2 机器学习专利申请数量
3.3.3 机器学习技术发展现状
3.3.4 机器学习技术成熟度
3.3.5 机器学习技术研究进展
3.3.6 机器学习技术研究趋势
第四章 中国机器学习产业链综合分析
4.1 机器学习产业链构成
4.2 机器学习产业链上游分析
4.2.1 人工智能芯片主要类型
4.2.2 人工智能芯片市场规模
4.2.3 人工智能芯片供应商
4.2.4 云计算市场规模分析
4.2.5 云计算平台服务商
4.2.6 云计算代表企业介绍
4.2.7 大数据技术体系图谱
4.2.8 大数据服务商分析
4.2.9 大数据市场规模分析
4.2.10 大数据市场支出规模
4.2.11 大数据行业应用结构
4.2.12 大数据产业人才需求
4.3 机器学习产业链中游分析
4.3.1 机器学习技术服务商
4.3.2 机器学习平台厂商
4.3.3 机器学习开放平台
4.3.4 机器学习开源发展
4.4 机器学习产业链下游概述
4.4.1 机器学习应用服务商
4.4.2 机器学习应用领域概况
4.4.3 基于GPU的机器学习应用
第五章 2020-2024年深度学习行业发展深度分析
5.1 深度学习行业发展综述
5.1.1 深度学习基本概念
5.1.2 深度学习发展历程
5.1.3 深度学习所处阶段
5.1.4 深度学习主要功能
5.1.5 深度学习发展动力
5.1.6 深度学习融合发展
5.2 深度学习市场运行现状分析
5.2.1 深度学习竞争格局
5.2.2 细分市场发展现状
5.2.3 预训练模型现状分析
5.2.4 深度学习融资现状
5.2.5 深度学习应用领域
5.2.6 深度学习发展问题
5.2.7 深度学习发展建议
5.3 深度学习开源框架市场分析
5.3.1 深度学习框架发展历程
5.3.2 深度学习框架主要作用
5.3.3 深度学习框架驱动因素
5.3.4 深度学习框架市场份额
5.3.5 开源框架市场竞争格局
5.4 深度学习行业发展前景及趋势分析
5.4.1 深度学习应用前景
5.4.2 深度学习发展趋势
5.4.3 深度学习技术趋势
5.4.4 模型小型化发展方向
第六章 中国机器学习行业应用领域发展分析
6.1 机器学习算法应用场景分析
6.1.1 分类算法应用场景
6.1.2 回归算法应用场景
6.1.3 聚类算法应用场景
6.1.4 关联规则应用场景
6.2 机器学习在医疗领域中的应用
6.2.1 主要应用场景
6.2.2 医疗影像智能诊断
6.2.3 新药研发
6.2.4 基因测序
6.3 机器学习在金融领域中的应用
6.3.1 主要应用场景
6.3.2 联邦学习
6.3.3 金融科技
6.3.4 智能风控
6.3.5 智慧银行
6.3.6 智慧投顾
6.4 机器学习在农业领域中的应用
6.4.1 应用意义
6.4.2 应用现状
6.4.3 应用问题
6.4.4 应用展望
6.5 机器学习在制造业中的应用
6.5.1 应用优势
6.5.2 智能工厂
6.5.3 智能物流
6.5.4 智能系统
6.5.5 缺陷检测
6.5.6 预测性维护
6.5.7 生成设计
6.5.8 能耗预测
6.5.9 供应链管理
6.6 机器学习在智慧城市中的应用
6.6.1 智能政务
6.6.2 智能基础设施系统
6.6.3 智能交通
6.6.4 自动驾驶
6.6.5 安防行业
6.7 机器学习在教育领域中的应用
6.7.1 智慧校园
6.7.2 智慧课堂
6.7.3 智适应教学
第七章 国内外企业主要机器学习产品及应用分析
7.1 全球主要科技企业机器学习布局
7.2 机器学习在国外企业中的应用
7.2.1 亚马逊机器学习应用
7.2.2 苹果公司机器学习应用
7.2.3 Ayasdi机器学习应用
7.2.4 Digital Reasoning机器学习应用
7.2.5 Facebook机器学习应用
7.2.6 谷歌机器学习应用
7.2.7 IBM Watson机器学习应用
7.2.8 QBurst机器学习应用
7.2.9 高通机器学习应用
7.2.10 Uber机器学习应用
7.3 机器学习在国内企业中的应用
7.3.1 百度机器学习云平台
7.3.2 阿里云机器学习平台
7.3.3 腾讯智能钛机器学习
7.3.4 第四范式AutoML平台
第八章 中国机器学习重点企业经营分析
8.1 北京机器学习信息技术有限公司
8.2 广州默尼互联网信息有限公司
8.3 广州麦仑信息科技有限公司
8.4 中科寒武纪科技股份有限公司
8.5 广州拓尔思大数据有限公司
第九章 2025-2031年中国机器学习行业投资分析及前景预测
9.1 中国机器学习行业投资分析
9.2 中国机器学习行业发展前景分析
9.2.1 机器学习市场发展前景
9.2.2 机器学习行业发展方向
9.2.3 机器学习市场空间预测
9.3 机器学习技术发展趋势分析
9.4 2025-2031年中国机器学习行业预测分析
9.4.1 2025-2031年中国机器学习行业影响因素分析
9.4.2 2025-2031年中国机器学习市场规模预测